Example 7.15 A cord of negligible mass is wound round the rim of a fly wheel of mass 20 kg and radius 20 cm. A steady pull of 25 N is applied on the cord as shown in Fig. 7.35. The flywheel is mounted on a horizontal axle with frictionless bearings.

- (a) Compute the angular acceleration of the wheel.
- (b) Find the work done by the pull, when 2m of the cord is unwound.
- (c) Find also the kinetic energy of the wheel at this point. Assume that the wheel starts from rest.
- (d) Compare answers to parts (b) and (c).

Answer

Fig. 7.35

(a) We use $I \alpha = \tau$ the torque $\tau = F R$ $= 25 \times 0.20$ Nm (as R = 0.20m) = 5.0 Nm I = Moment of inertia of flywheel about its

axis =
$$\frac{MR^2}{2}$$

= $\frac{20.0 \times (0.2)^2}{2}$ = 0.4 kg m²
 α = angular acceleration
= 5.0 N m/0.4 kg m² = 12.5 s⁻²
(b) Work done by the pull unwinding 2m of the cord
= 25 N × 2m = 50 J
(c) Let ω be the final angular velocity. The kinetic energy gained = $\frac{1}{2}I\omega^2$,

since the wheel starts from rest. Now,

$$\omega^2 = \omega_0^2 + 2\alpha\theta, \quad \omega_0 = 0$$

The angular displacement θ = length of unwound string / radius of wheel = 2m/0.2 m = 10 rad

 $\omega^2 = 2 \times 12.5 \times 10.0 = 250 (rad/s)^2$

:. K.E. gained =
$$\frac{1}{2} \times 0.4 \times 250 = 50 \text{ J}$$

(d) The answers are the same, i.e. the kinetic energy gained by the wheel = work done by the force. There is no loss of energy due to friction.